数据怎样分析产品?数据分析产品的2大步骤

动态 未结 置顶 精帖
用户
悬赏:60飞吻

数据分析的核心并不在于数据本身,而在于设计有意义、有价值的数据指标,通过科学有效的手段去分析,进而发现问题优化迭代。数据分析因价值而存在,数据分析本就是一个价值增量的过程。

数据分析三个核心要点:

  1. 什么是数据分析?(What)
  2. 为什么数据分析?(Why)
  3. 如何数据分析?(How)

第一个问题就不多赘述了,重点实例解析第二、三个问题。数据分析的缘由/出发点很复杂,甚至有时候让人很焦灼,因为不同用户数据分析的出发点及分析过是完全不一样的。站在一个更高视角分析数据,或者说数据分析的维度不仅限于产品思维概念上的数据需要,而是一个关乎产品一体性的命题。

案例分析

下面将逐一以实例的形式解读数据分析的两个核心问题,大致分为以下几步:

第一步:确认数据分析的对象

产品名称:企查查APP V9.1.8

产品愿景:中国企业信息搜集的综合体,为投资者、金融相关从业者等提供企业的一站式信息服务。

分析范畴:产品迭代、产品优化、产品分析/验证

背景概述:现阶段笔者从事征信行业的产品工作,正在参与一款企业信用信息查询APP V2.x的升级迭代。此次的该类分析过程侧重数据指标制定和建模的过程,而并非实际数据的展示(别人家的应用,没有办法拿到完整的数据源)。再次强调,数据指标的制定远比数据分析过程要重要的多或者说更加富有创造性。

第二步:制定数据分析指标

1.商业模式/盈利方式分析

免费增值模式,先做成流量的入口,后期分享流量红利扩大转化率。

2.了解产品现状/定量分析产品

2.1 用户分析

用户规模:

  • 用户群体按照群体大致分为个人、企业,分析出个人和企业用户的人数比例,明确整体的用户分布情况。
  • 每月/日/日的新增用户、流失用户、回流用户的比例的走势,选择恰当的走势变化渠道;

用户质量:产品粘性及病毒性的反应,体现在用户的活跃度上,一般包括,日活跃(DAU)、周活跃(WAU)、月活跃(MAU);

  • 采用同期群和用户分类的分析方法,特定用户群体的特定分析过程,用户质量也是渠道或营销活动效果的间接体现,以便后期及时的调整和处理;
  • 用户质量的标准制定,包括忠诚用户、联系活跃用户、流失用户等等,为反应不同指标设置特定的用户质量指标;

2.2 应用分析:

  • 启动次数,某日/周/月的启动次数占所选时段总启动次数的比例,直接反应用的生活时间成本;
  • 版本分布,对开发和维护的意义非常深刻,展示累计用户排名前10的各个版本变化趋势,可以帮助了解每个版
回帖
  • 消灭零回复
[打开调试信息]