在进行数据分析过程中,我们通常需要使用各种模型来证明自己的分析观点,使自己的结论更具备说服力,同时也让自己的论证思路更具备逻辑性和条理性。
今天老李就给罗列了6个常用的数据分析模型,并附上实际的案例讲解以及分析模板,希望能让大家快速掌握这些模型和方法!
话不多说,上干货!
RFM 分析是美国数据库营销研究所提出的一种简单实用的客户分析方法,发现客户数据中有三个神奇的要素:
这三个要素构成了数据分析最好的指标,RFM 分析也就是通过这个三个关键指标对客户进行观察和分类,针对不同的特征的客户进行相应的营销策略,如下图所示:
案例讲解:已知某公司销售信息,分析该公司客户消费能力,并将其分类进行营销。
分析思路:
利用FineBI制作
结论:客户类型中占比最多的是一般发展客户(最近购买过,但频率和金额都不大),应向该客户推送公司主营业务,通过宣传推广让产品信息送达客户手中。
其次占比较多的是一般挽留客户(很长时间未买,购买的频率和金额较少),应该面向该部分人群推出促销活动,拉动消费的积极性
此外还可计算各地区客户消费能力与消费流失情况,由于M、F 为正向指标,则用M、F作为横纵轴代表客户消费的能力,值越大表示消费能力越高
R为负向指标,则代表消费流失情况,图形越大表示最近消费距今时间越长,流失越严重。
结论:成都和北京地区客户消费金额较大,但客户流失情况比较严重,需要重点关注。武汉、沈阳地区客户以小额消费为主,但消费次数多。
帕累托分析法又称ABC 分类法,平常也称之为「80 对 20」规则,常用于商品的库存管理分析中。
把产品或业务分为A、B、 C三类,用于分清业务的重点和非重点,反映出每类产品的价值对库存、销售、成本等总价值的影响,从而实现差异化策略
Copyright ©2015~2025 www.kingtall.com 网站ICP备案号:粤ICP备14001765号-1