大数据精准营销获客怎么做精准营销的关键点

动态 未结 置顶 精帖
用户
悬赏:60飞吻

说到大数据精准营销,不得不提到精准营销的关键要素,今天我们就来分享一下大数据精准营销的七个关键点!

一、用户画像

用户画像是根据用户社会属性、生活习惯和消费行为等信息而抽象出的一个标签化的用户模型。

具体包含以下几个维度:

用户固定特征:性别,年龄,地域,教育水平,生辰八字,职业,星座

用户兴趣特征:兴趣爱好,使用APP,网站,浏览/收藏/评论内容,品牌偏好,产品偏好

用户社会特征:生活习惯,婚恋,社交/信息渠道偏好,宗教信仰,家庭成分

用户消费特征:收入状况,购买力水平,商品种类,购买渠道喜好,购买频次

用户动态特征:当下时间,需求,正在前往的地方,周边的商户,周围人群,新闻事件如何生成用户精准画像大致分成三步。

1.采集和清理数据:用已知预测未知

首先得掌握繁杂的数据源。包括用户数据、各式活动数据、电子邮件订阅数、线上或线下数据库及客户服务信息等。

这个是累积数据库;这里面最基础的就是如何收集网站/APP用户行为数据。比如当你登陆某网站,其Cookie就一直驻留在浏览器中,当用户触及的动作,点击的位置,按钮,点赞,评论,粉丝,还有访问的路径,可以识别并记录他/她的所有浏览行为,然后持续分析浏览过的关键词和页面,分析出他的短期需求和长期兴趣。

还可以通过分析朋友圈,获得非常清晰获得对方的工作,爱好,教育等方面,这比个人填写的表单,还要更全面和真实。

我们用已知的数据寻找线索,不断挖掘素材,不但可以巩固老会员,也可以分析出未知的顾客与需求,进一步开发市场。

2.用户分群:分门别类贴标签

描述分析是最基本的分析统计方法,描述统计分为两大部分:数据描述和指标统计。

(1)数据描述:用来对数据进行基本情况的刻画,包括数据总数,范围,数据来源。

(2)指标统计:把分布,对比,预测指标进行建模。这里常常是Data mining的一些数学模型,像响应率分析模型,客户倾向性模型,这类分群使用Lift图,用打分的方法告诉你哪一类客户有较高的接触和转化的价值。

在分析阶段,数据会转换为影响指数,进而可以做”一对一”的精准营销。举个例子,一个80后客户喜欢在生鲜网站上早上10点下单买菜,晚上6点回家做饭,周末喜欢去附近吃日本料理,经过搜集与转换,就会产生一些标签,包括”80后””生鲜””做饭””日本料理”等等,贴在消费者身上。

3.制定策

描述分析是最基本的分析统计方法,描述统计分为两大部分:数据描述和指标统计。

(1)数据描述:用来对数据进行基本情况的刻画,包括数据总数,范围,数据来源。

(2)指标统计:把分布,对比,预测指标进行建模。这里常常是Data mining的一些数学模型,像响应率分析模型,客户倾向性模型,这类分群使用Lift图,用打分的方法告诉你哪一类客户有较高的接触和转化的价值。

在分析阶段,数据会转换为影响指数,进而可以做”一对一”的精准营销。举个例子,一个80后客户喜欢在生鲜网站上早上10点下单买菜,晚上6点回家做饭,周末喜欢去附近吃日本料理,经过搜集与转换,就会产生一些标签,包括”80后””生鲜””做饭””日本料理”等等,贴在消费者身上。

3.

回帖
  • 消灭零回复
[打开调试信息]